Astrophysicist

Category: First Author

Weinberger, Springel, Pakmor (2020)

The Arepo public code release

by
Weinberger, Rainer; Springel, Volker and Pakmor, Rüdiger

abstract
We introduce the public version of the cosmological magnetohydrodynamical moving-mesh simulation code Arepo. This version contains a finite-volume magnetohydrodynamics algorithm on an unstructured, dynamic Voronoi tessellation coupled to a tree-particle-mesh algorithm for the Poisson equation either on a Newtonian or cosmologically expanding spacetime. Time-integration is performed adopting local timestep constraints for each cell individually, solving the fluxes only across active interfaces, and calculating gravitational forces only between active particles, using an operator-splitting approach. This allows simulations with high dynamic range to be performed efficiently. Arepo is a massively distributed-memory parallel code, using the Message Passing Interface (MPI) communication standard and employing a dynamical work-load and memory balancing scheme to allow optimal use of multi-node parallel computers. The employed parallelization algorithms of Arepo are deterministic and produce binary-identical results when re-run on the same machine and with the same number of MPI ranks. A simple primordial cooling and star formation model is included as an example of sub-resolution models commonly used in simulations of galaxy formation. Arepo also contains a suite of computationally inexpensive test problems, ranging from idealized tests for automated code verification to scaled-down versions of cosmological galaxy formation simulations, and is extensively documented in order to assist adoption of the code by new scientific users.

published in
 The Astrophysical Journal Supplement Series, Volume 248, Issue 2, id.32, June 2020

links to paper
[ADS][arXiv][website][repository]

Weinberger et al. (2018)

Supermassive black holes and their feedback effects in the IllustrisTNG simulation

by
Weinberger, Rainer; Springel, Volker; Pakmor, Rüdiger; Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Marinacci, Federico; Naiman, Jill; Torrey, Paul; Hernquist, Lars

abstract
We study the population of supermassive black holes (SMBHs) and their effects on massive central galaxies in the IllustrisTNG cosmological hydrodynamical simulations of galaxy formation. The employed model for SMBH growth and feedback assumes a two-mode scenario in which the feedback from active galactic nuclei occurs through a kinetic, comparatively efficient mode at low accretion rates relative to the Eddington limit, and in the form of a thermal, less efficient mode at high accretion rates. We show that the quenching of massive central galaxies happens coincidently with kinetic-mode feedback, consistent with the notion that active supermassive black holes cause the low specific star formation rates observed in massive galaxies. However, major galaxy mergers are not responsible for initiating most of the quenching events in our model. Up to black hole masses of about 10^{8.5} M_{☉}, the dominant growth channel for SMBHs is in the thermal mode. Higher mass black holes stay mainly in the kinetic mode and gas accretion is self-regulated via their feedback, which causes their Eddington ratios to drop, with SMBH mergers becoming the main channel for residual mass growth. As a consequence, the quasar luminosity function is dominated by rapidly accreting, moderately massive black holes in the thermal mode. We show that the associated growth history of SMBHs produces a low-redshift quasar luminosity function and a redshift zero black hole mass – stellar bulge mass relation is in good agreement with observations, whereas the simulation tends to overpredict the high-redshift quasar luminosity function.

published in
Monthly Notices of the Royal Astronomical Society, Volume 479, Issue 3, p.4056-4072, September 2018

links to paper
[ADS][arXiv]

Weinberger et al. (2017)

Simulating the interaction of jets with the intracluster medium

by
Weinberger, Rainer; Ehlert, Kristian; Pfrommer, Christoph; Pakmor, Rüdiger; Springel, Volker

abstract
Jets from supermassive black holes in the centres of galaxy clusters are a potential candidate for moderating gas cooling and subsequent star formation through depositing energy in the intracluster gas. In this work, we simulate the jet-intracluster medium interaction using the moving-mesh magnetohydrodynamics code arepo. Our model injects supersonic, low-density, collimated and magnetized outflows in cluster centres, which are then stopped by the surrounding gas, thermalize and inflate low-density cavities filled with cosmic rays. We perform high-resolution, non-radiative simulations of the lobe creation, expansion and disruption, and find that its dynamical evolution is in qualitative agreement with simulations of idealized low-density cavities that are dominated by a large-scale Rayleigh-Taylor instability. The buoyant rising of the lobe does not create energetically significant small-scale chaotic motion in a volume-filling fashion, but rather a systematic upward motion in the wake of the lobe and a corresponding back-flow antiparallel to it. We find that, overall, 50 per cent of the injected energy ends up in material that is not part of the lobe, and about 25 per cent remains in the inner 100 kpc. We conclude that jet-inflated, buoyantly rising cavities drive systematic gas motions that play an important role in heating the central regions, while mixing of lobe material is subdominant. Encouragingly, the main mechanisms responsible for this energy deposition can be modelled already at resolutions within reach in future, high-resolution cosmological simulations of galaxy clusters.

published in
Monthly Notices of the Royal Astronomical Society, Volume 470, Issue 4, p.4530-4546, October 2017

links to paper
[ADS][arXiv]

Weinberger et al. (2017)

Simulating galaxy formation with black hole driven thermal and kinetic feedback

by
Weinberger, Rainer; Springel, Volker; Hernquist, Lars; Pillepich, Annalisa; Marinacci, Federico; Pakmor, Rüdiger; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Naiman, Jill; Torrey, Paul

abstract
The inefficiency of star formation in massive elliptical galaxies is widely believed to be caused by the interactions of an active galactic nucleus (AGN) with the surrounding gas. Achieving a sufficiently rapid reddening of moderately massive galaxies without expelling too many baryons has however proven difficult for hydrodynamical simulations of galaxy formation, prompting us to explore a new model for the accretion and feedback effects of supermassive black holes. For high-accretion rates relative to the Eddington limit, we assume that a fraction of the accreted rest mass energy heats the surrounding gas thermally, similar to the ‘quasar mode’ in previous work. For low-accretion rates, we invoke a new, pure kinetic feedback model that imparts momentum to the surrounding gas in a stochastic manner. These two modes of feedback are motivated both by theoretical conjectures for the existence of different types of accretion flows as well as recent observational evidence for the importance of kinetic AGN winds in quenching galaxies. We find that a large fraction of the injected kinetic energy in this mode thermalizes via shocks in the surrounding gas, thereby providing a distributed heating channel. In cosmological simulations, the resulting model produces red, non-star-forming massive elliptical galaxies, and achieves realistic gas fractions, black hole growth histories and thermodynamic profiles in large haloes.

published in
Monthly Notices of the Royal Astronomical Society, Volume 465, Issue 3, p.3291-3308, March 2017

links to paper
[ADS][arXiv]

© 2020 Rainer Weinberger

Theme by Anders NorenUp ↑