Astrophysicist

Category: galaxy formation and evolution (Page 1 of 4)

Pathak et al. (2021)

Quenching, Mergers, and Age Profiles for z = 2 Galaxies in IllustrisTNG

by
Pathak, Debosmita; Belli, Sirio; Weinberger, Rainer

abstract
Using the IllustrisTNG cosmological galaxy formation simulations, we analyze the physical properties of young quiescent galaxies at z = 2 with stellar masses above 1010.5 M. This key population provides an unaltered probe into the evolution of galaxies from star-forming to quiescent, and has been recently targeted by several observational studies. Young quiescent galaxies in the simulations do not appear unusually compact, in tension with observations, but they show unique age profiles that are qualitatively consistent with the observed color gradients. In particular, more than half of the simulated young quiescent galaxies show positive age gradients due to recent intense central starbursts, which are triggered by significant mergers. Yet, there is a sizable population of recently quenched galaxies without significant mergers and with flat age profiles. Our results suggest that mergers play a fundamental role in structural transformation, but are not the only available pathway to quench a z = 2 galaxy.

published in
The Astrophysical Journal Letters, Volume 916, Issue 2, id.L23, 7pp.

links to paper
[ADS][arXiv]

Emami et al. (2021)

Morphological Types of DM Halos in Milky Way-like Galaxies in the TNG50 Simulation: Simple, Twisted, or Stretched

by
Emami, Razieh; Genel, Shy; Hernquist, Lars; Alcock, Charles; Bose, Sownak; Weinberger, Rainer; Vogelsberger, Mark; Marinacci, Federico; Loeb, Abraham; Torrey, Paul; Forbes, John C.

abstract
We present a comprehensive analysis of the shape of dark matter (DM) halos in a sample of 25 Milky Way-like galaxies in TNG50 simulation. Using an enclosed volume iterative method, we infer an oblate-to-triaxial shape for the DM halo with median T ≃ 0.24. We group DM halos into three different categories. Simple halos (32% of the population) establish principal axes whose ordering in magnitude does not change with radius and whose orientations are almost fixed throughout the halo. Twisted halos (32%) experience levels of gradual rotations throughout their radial profiles. Finally, stretched halos (36%) demonstrate a stretching in the lengths of their principal axes where the ordering of different eigenvalues changes with radius. Subsequently, the halo experiences a “rotation” of ∼90° where the stretching occurs. Visualizing the 3D ellipsoid of each halo, for the first time, we report signs of a reorienting ellipsoid in twisted and stretched halos. We examine the impact of baryonic physics on DM halo shape through a comparison to dark matter only (DMO) simulations. This suggests a triaxial (prolate) halo. We analyze the impacts of substructure on DM halo shape in both hydrodynamical and DMO simulations and confirm that they are subdominant. We study the distribution of satellites in our sample. In simple and twisted halos, the angle between satellites’ angular momentum and the galaxy’s angular momentum grows with radius. However, stretched halos show a flat distribution of angles. Overlaying our theoretical outcome on the observational results presented in the literature establishes a fair agreement.

published in
The Astrophysical Journal, Volume 913, Issue 1, id.36, 30 pp.

links to paper
[ADS][arXiv]

Hayward et al. (2021)

Submillimetre galaxies in cosmological hydrodynamical simulations – an opportunity for constraining feedback models

by
Hayward, Christopher C.; Sparre, Martin; Chapman, Scott C.; Hernquist, Lars; Nelson, Dylan; Pakmor, Rüdiger; Pillepich, Annalisa; Springel, Volker; Torrey, Paul; Vogelsberger, Mark; Weinberger, Rainer 

abstract
Submillimetre galaxies (SMGs) have long posed a challenge for theorists, and self-consistently reproducing the properties of the SMG population in a large-volume cosmological hydrodynamical simulation has not yet been achieved. We use a scaling relation derived from previous simulations plus radiative transfer calculations to predict the submm flux densities of simulated SMGs drawn from cosmological simulations from the Illustris and IllustrisTNG projects based on the simulated galaxies’ star formation rates (SFRs) and dust masses, and compare the predicted number counts with observations. We find that the predicted SMG number counts based on IllustrisTNG are significantly less than observed (more than 1 dex at S850 ≳ 4 mJy). The simulation from the original Illustris project yields more SMGs than IllustrisTNG: the predicted counts are consistent with those observed at both S850 ≲ 5 mJy and S850 ≳ 9 mJy and only a factor of ∼2 lower than those observed at intermediate flux densities. The redshift distribution of SMGs with S850 > 3 mJy in IllustrisTNG is consistent with the observed distribution, whereas the Illustris redshift distribution peaks at significantly lower redshift (1.5 versus 2.8). We demonstrate that IllustrisTNG hosts fewer SMGs than Illustris because in the former, high-mass ( $M_{\star }\sim 10^{11} \, \text{M}_{\odot }$ ) z ∼ 2-3 galaxies have lower dust masses and SFRs than in Illustris owing to differences in the subgrid models for stellar and/or active galactic nucleus feedback between the two simulations (we unfortunately cannot isolate the specific cause(s) post hoc). Our results demonstrate that because our method enables predicting SMG number counts in post-processing with a negligible computational expense, SMGs can provide useful constraints for tuning subgrid models in future large-volume cosmological simulations.

published in
Monthly Notices of the Royal Astronomical Society, Volume 502, Issue 2, pp.2922-2933

links to paper
[ADS][arXiv]

Zinger et al. (2020)

Ejective and preventative: the IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies

by
Zinger, Elad; Pillepich, Annalisa; Nelson, Dylan; Weinberger, Rainer; Pakmor, Rüdiger; Springel, Volker; Hernquist, Lars; Marinacci, Federico; Vogelsberger, Mark

abstract
Supermassive black holes (SMBHs) that reside at the centres of galaxies can inject vast amounts of energy into the surrounding gas and are thought to be a viable mechanism to quench star formation in massive galaxies. Here, we study the 109−1012.5 M⊙ stellar mass central galaxy population of the IllustrisTNG simulation, specifically the TNG100 and TNG300 volumes at z = 0, and show how the three components – SMBH, galaxy, and circumgalactic medium (CGM) – are interconnected in their evolution. We find that gas entropy is a sensitive diagnostic of feedback injection. In particular, we demonstrate how the onset of the low-accretion black hole (BH) feedback mode, realized in the IllustrisTNG model as a kinetic, BH-driven wind, leads not only to star formation quenching at stellar masses ≳1010.5M but also to a change in thermodynamic properties of the (non-star-forming) gas, both within the galaxy and beyond. The IllustrisTNG kinetic feedback from SMBHs increases the average gas entropy, within the galaxy and in the CGM, lengthening typical gas cooling times from 10−100Myr to 1−10Gyr , effectively ceasing ongoing star formation and inhibiting radiative cooling and future gas accretion. In practice, the same active galactic nucleus (AGN) feedback channel is simultaneously ‘ejective’ and ‘preventative’ and leaves an imprint on the temperature, density, entropy, and cooling times also in the outer reaches of the gas halo, up to distances of several hundred kiloparsecs. In the IllustrisTNG model, a long-lasting quenching state can occur for a heterogeneous CGM, whereby the hot and dilute CGM gas of quiescent galaxies contains regions of low-entropy gas with short cooling times.

published in
Monthly Notices of the Royal Astronomical Society, Volume 499, Issue 1, pp.768-792, November 2020

links to paper
[ADS][arXiv]

Nelson et al. (2020)

Resolving small-scale cold circumgalactic gas in TNG50

by
Nelson, Dylan; Sharma, Prateek; Pillepich, Annalisa; Springel, Volker; Pakmor, Rüdiger; Weinberger, Rainer; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars

abstract
We use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to explore the properties and origin of cold circumgalactic medium (CGM) gas around massive galaxies (M > 1011 M ) at intermediate redshift ( z∼0.5 ). We discover a significant abundance of small-scale, cold gas structure in the CGM of ‘red and dead’ elliptical systems, as traced by neutral H I and Mg II. Halos can host tens of thousands of discrete absorbing cloudlets, with sizes of order a kpc or smaller. With a Lagrangian tracer analysis, we show that cold clouds form due to strong δρ/ρ¯≫1 gas density perturbations that stimulate thermal instability. These local overdensities trigger rapid cooling from the hot virialized background medium at ∼107 K to radiatively inefficient ∼104 K clouds, which act as cosmologically long-lived, ‘stimulated cooling’ seeds in a regime where the global halo does not satisfy the classic tcool/tff < 10 criterion. Furthermore, these small clouds are dominated by magnetic rather than thermal pressure, with plasma β ≪ 1, suggesting that magnetic fields may play an important role. The number and total mass of cold clouds both increase with resolution, and the mgas ≃ 8 × 104M cell mass of TNG50 enables the ∼ few hundred pc, small-scale CGM structure we observe to form. Finally, we make a preliminary comparison against observations from the COS-LRG, LRG-RDR, COS-Halos, and SDSS LRG surveys. We broadly find that our recent, high-resolution cosmological simulations produce sufficiently high covering fractions of extended, cold gas as observed to surround massive galaxies.

published in
 Monthly Notices of the Royal Astronomical Society, Volume 498, Issue 2, pp.2391-2414, October 2020

links to paper
[ADS][arXiv]

Terrazas et al. (2020)

The relationship between black hole mass and galaxy properties: examining the black hole feedback model in IllustrisTNG

by
Terrazas, Bryan A.; Bell, Eric F.; Pillepich, Annalisa; Nelson, Dylan; Somerville, Rachel S.; Genel, Shy; Weinberger, Rainer; Habouzit, Mélanie; Li, Yuan; Hernquist, Lars; Vogelsberger, Mark

abstract
Supermassive black hole feedback is thought to be responsible for the lack of star formation, or quiescence, in a significant fraction of galaxies. We explore how observable correlations between the specific star formation rate (sSFR), stellar mass (Mstar), and black hole mass (MBH) are sensitive to the physics of black hole feedback in a galaxy formation model. We use the IllustrisTNG simulation suite, specifically the TNG100 simulation and 10 model variations that alter the parameters of the black hole model. Focusing on central galaxies at z = 0 with Mstar > 1010 M, we find that the sSFR of galaxies in IllustrisTNG decreases once the energy from black hole kinetic winds at low accretion rates becomes larger than the gravitational binding energy of gas within the galaxy stellar radius. This occurs at a particular MBH threshold above which galaxies are found to sharply transition from being mostly star forming to mostly quiescent. As a result of this behaviour, the fraction of quiescent galaxies as a function of Mstar is sensitive to both the normalization of the MBH-Mstar relation and the MBH threshold for quiescence in IllustrisTNG. Finally, we compare these model results to observations of 91 central galaxies with dynamical MBH measurements with the caveat that this sample is not representative of the whole galaxy population. While IllustrisTNG reproduces the observed trend that quiescent galaxies host more massive black holes, the observations exhibit a broader scatter in MBH at a given Mstar and show a smoother decline in sSFR with MBH.

published in
Monthly Notices of the Royal Astronomical Society, Volume 493, Issue 2, p.1888-1906, April 2020

links to paper
[ADS][arXiv]

Truong et al. (2020)

X-ray signatures of black hole feedback: hot galactic atmospheres in IllustrisTNG and X-ray observations

by
Truong, Nhut; Pillepich, Annalisa; Werner, Norbert; Nelson, Dylan; Lakhchaura, Kiran; Weinberger, Rainer; Springel, Volker; Vogelsberger, Mark; Hernquist, Lars

abstract
Hot gaseous atmospheres that permeate galaxies and extend far beyond their stellar distribution, where they are commonly referred to as the circumgalactic medium, imprint important information about feedback processes powered by the stellar populations of galaxies and their central supermassive black holes (SMBHs). In this work, we study the properties of this hot X-ray emitting medium using the IllustrisTNG cosmological simulations. We analyse their mock X-ray spectra, obtained from the diffuse and metal-enriched gas in TNG100 and TNG50, and compare the results with X-ray observations of nearby early-type galaxies. The simulations reproduce the observed X-ray luminosities (LX) and temperature (TX) at small (<Re) and intermediate (<5Re) radii reasonably well. We find that the X-ray properties of lower mass galaxies depend on their star formation rates. In particular, in the magnitude range where the star-forming and quenched populations overlap, we find that the X-ray luminosities of star-forming galaxies are on average about an order of magnitude higher than those of their quenched counterparts. We show that this diversity in LX is a direct manifestation of the quenching mechanism in the simulations, where the galaxies are quenched due to gas expulsion driven by SMBH kinetic feedback. The observed dichotomy in LX is thus an important observable prediction for the SMBH feedback-based quenching mechanisms implemented in state-of-the-art cosmological simulations. While the current X-ray observations of star-forming galaxies are broadly consistent with the predictions of the simulations, the observed samples are small and more decisive tests are expected from the sensitive all-sky X-ray survey with eROSITA.

published in
Monthly Notices of the Royal Astronomical Society, Volume 494, Issue 1, pp.549-570, March 2020

links to paper
[ADS][arXiv]

Vogelsberger et al. (2020)

High-redshift JWST predictions from IllustrisTNG: dust modelling and galaxy luminosity functions

by
Vogelsberger, Mark; Nelson, Dylan; Pillepich, Annalisa; Shen, Xuejian; Marinacci, Federico; Springel, Volker; Pakmor, Rüdiger; Tacchella, Sandro; Weinberger, Rainer; Torrey, Paul; Hernquist, Lars

abstract
The James Webb Space Telescope (JWST) promises to revolutionize our understanding of the early Universe, and contrasting its upcoming observations with predictions of the Λ cold dark matter model requires detailed theoretical forecasts. Here, we exploit the large dynamic range of the IllustrisTNG simulation suite, TNG50, TNG100, and TNG300, to derive multiband galaxy luminosity functions from z = 2 to z = 10. We put particular emphasis on the exploration of different dust attenuation models to determine galaxy luminosity functions for the rest-frame ultraviolet (UV), and apparent wide NIRCam bands. Our most detailed dust model is based on continuum Monte Carlo radiative transfer calculations employing observationally calibrated dust properties. This calibration results in constraints on the redshift evolution of the dust attenuation normalization and dust-to-metal ratios yielding a stronger redshift evolution of the attenuation normalization compared to most previous theoretical studies. Overall we find good agreement between the rest-frame UV luminosity functions and observational data for all redshifts, also beyond the regimes used for the dust model calibrations. Furthermore, we also recover the observed high-redshift (z = 4-6) UV luminosity versus stellar mass relation, the H α versus star formation rate relation, and the H α luminosity function at z = 2. The bright end (MUV > -19.5) cumulative galaxy number densities are consistent with observational data. For the F200W NIRCam band, we predict that JWST will detect ∼80 (∼200) galaxies with a signal-to-noise ratio of 10 (5) within the NIRCam field of view, 2.2× 2.2 arcmin2, for a total exposure time of 10^5 s in the redshift range z = 8 ± 0.5. These numbers drop to ∼10 (∼40) for an exposure time of 10^4 s.

published in
Monthly Notices of the Royal Astronomical Society, Volume 492, Issue 4, p.5167-5201, March 2020

links to paper
[ADS][arXiv]

Wang et al. (2020)

Early-type galaxy density profiles from IllustrisTNG – I. Galaxy correlations and the impact of baryons

by
Wang, Yunchong; Vogelsberger, Mark; Xu, Dandan; Mao, Shude; Springel, Volker; Li, Hui; Barnes, David; Hernquist, Lars; Pillepich, Annalisa; Marinacci, Federico; Pakmor, Rüediger; Weinberger, Rainer; Torrey, Paul

abstract
We explore the isothermal total density profiles of early-type galaxies (ETGs) in the IllustrisTNG simulation. For the selected 559 ETGs at z = 0 with stellar masses 10^{10.7} M_{☉ } ≤ M_{\ast } ≤ 10^{11.9} M_{☉ }, the total power-law slope has a mean of <γ′> = 2.011 ± 0.007 and a scatter of σ _{γ ^’ }} = 0.171 over the radial range 0.4-4 times the stellar half-mass radius. Several correlations between γ′ and galactic properties including stellar mass, effective radius, stellar surface density, central velocity dispersion, central dark matter fraction, and in situ-formed stellar mass ratio are compared to observations and other simulations, revealing that IllustrisTNG reproduces many correlation trends, and in particular, γ′ is almost constant with redshift below z = 2. Through analysing IllustrisTNG model variations, we show that black hole kinetic winds are crucial to lowering γ′ and matching observed galaxy correlations. The effects of stellar winds on γ′ are subdominant compared to active galactic nucleus (AGN) feedback, and differ due to the presence of AGN feedback from previous works. The density profiles of the ETG dark matter haloes are well described by steeper than NFW profiles, and they are steeper in the full physics (FP) run than their counterparts in the dark matter-only (DMO) run. Their inner density slopes anticorrelate (remain constant) with the halo mass in the FP (DMO) run, and anticorrelate with the halo concentration parameter c200 in both the types of runs. The dark matter haloes of low-mass ETGs are contracted whereas high-mass ETGs are expanded, suggesting that variations in the total density profile occur through the different halo responses to baryons.

published in
Monthly Notices of the Royal Astronomical Society, Volume 491, Issue 4, p.5188-5215, February 2020

links to paper
[ADS][arXiv]

Nelson et al. (2019)

First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback

by
Nelson, Dylan; Pillepich, Annalisa; Springel, Volker; Pakmor, Rüdiger; Weinberger, Rainer; Genel, Shy; Torrey, Paul; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars

abstract
We present the new TNG50 cosmological, magnetohydrodynamical simulation – the third and final volume of the IllustrisTNG project. This simulation occupies a unique combination of large volume and high resolution, with a 50 Mpc box sampled by 21603 gas cells (baryon mass of 8 × 104 M). The median spatial resolution of star-forming interstellar medium gas is ∼100-140 pc. This resolution approaches or exceeds that of modern `zoom’ simulations of individual massive galaxies, while the volume contains ∼20 000 resolved galaxies with M_\star ≳ 10^7 M. Herein we show first results from TNG50, focusing on galactic outflows driven by supernovae as well as supermassive black hole feedback. We find that the outflow mass loading is a non-monotonic function of galaxy stellar mass, turning over and rising rapidly above 1010.5 M due to the action of the central black hole (BH). The outflow velocity increases with stellar mass, and at fixed mass it is faster at higher redshift. The TNG model can produce high-velocity, multiphase outflows that include cool, dense components. These outflows reach speeds in excess of 3000 km s-1 out to 20 kpc with an ejective, BH-driven origin. Critically, we show how the relative simplicity of model inputs (and scalings) at the injection scale produces complex behaviour at galactic and halo scales. For example, despite isotropic wind launching, outflows exhibit natural collimation and an emergent bipolarity. Furthermore, galaxies above the star-forming main sequence drive faster outflows, although this correlation inverts at high mass with the onset of quenching, whereby low-luminosity, slowly accreting, massive BHs drive the strongest outflows.

published in

Monthly Notices of the Royal Astronomical Society, Volume 490, Issue 3, p.3234-3261, December 2019

links to paper
[ADS][arXiv]

« Older posts

© 2021 Rainer Weinberger

Theme by Anders NorenUp ↑