
WE-Heraeus and NARIT Cosmology School 2025

How to make a Universe in a computer

Rainer Weinberger

last modified: October 10, 2025

There is a git repository with example scripts available on github. To download visit the website or
clone it via

git clone https://github.com/rainerweinberger/CosmoComputingSchool.git

Note that the repository contains more examples than the ones covered here.

1 Cosmological simulations in theory

Cosmological simulations are performed to solve the initial value problem of the matter distribution in
a representative part of the Universe. There are a number of assumptions from our standard picture
about the Universe on the largest scales, in particular

• We have a good understanding of the distribution of matter in the early Universe from the cosmic
microwave background radiation, and can describe these matter inhomogeneities using perturbation
theory.

• The Universe is homogenous and isotropic on large scales. Thus, we can set up a finite simulation
volume with periodic boundary conditions.

• The expansion history of the Universe can be solved independently from the formation of structure.
This allows us to solve the mutual interaction of particles in comoving coordinates.

• Apart from the expansion itself, we can treat gravity Newtonian. In particular, gravity acts in-
stantaneously.

Cosmological simulations are by now a well-established technique, with a solid physical, algorithmic
and numerical basis. Mastering all the details of this modelling is a substantial undertaking that typically
takes years. Thus, the instructions found here are solely to help with the practical problem of getting
started to run a full simulation, and to get a first sense of the data-analysis of the simulation results.
For the interested reader, further (substantially more comprehensive) reading is provided below.

1.1 Literature

• A comprehensive description about the equations and a high-level description of the numerical
methods used in cosmological simulations of galaxy formation can be found in (Vogelsberger et al.,
2020)

• The detailed algorithms can be found in dedicated code papers.

– The Gadget-4 code is described in (Springel et al., 2021).

– The Arepo code is described in (Springel, 2010; Weinberger et al., 2020)

• To learn more about the additional physics in galaxy formation simulations (Feldmann and Bieri,
2025) provide an up-to-date overview.

• One of the reference graduate-level textbooks on galaxy formation, covering topics from cosmolog-
ical structure formation to galaxy evolution is Mo et al. (2010).

1

https://github.com/rainerweinberger/CosmoComputingSchool

2 Compiling Gadget-4 – common obstacles

Simulation codes are complex software that make use of libraries and aspects you might not be familiar
with. This includes numerics libraries you haven’t installed on your computer or libraries to enable
parallel computation on multiple, distributed compute cores. This generally increases the complexity of
using such codes and complicates the process of getting started. This section aims to address some of
the most common obstacles.

2.1 Get code and compilation

To run a simulation, you first need to download the simulation code. Similar to the scripts, modern
simulation codes are usually managed in version-control systems, mostly git.

> git clone https://github.com/rainerweinberger/gadget4.git gadget4

This will download the code in your present directory. Change into the gadget4 directory

> cd gadget4

To run a simulation, we need a number of files. First, a configuration file, which specifies which of the
built-in algorithms are actually used. In gadget-4, this file is typically called Config.sh. There are
several examples provided with the code. Copy the provided configuration file to the code directory

> cp examples/DM-L50-N128/Config.sh ./

Before we can compile the code, we need to ensure that the paths to the required libraries are known
to the build system. While these paths are generally standard in normal installations, say, e.g. of a
Ubuntu Linux system, these paths can vary on high-performance supercomputers and need to be set
accordingly (this is information that should be accessible in the respective machine documentation or
from the support staff). For computers on which the code has already been used, these generally do not
change. These settings are already stored and can be used by setting the SYSTYPE variable. To do so,
make sure there exists a file called Makefile.systype. If not create one by copying the template:

> cp Template-Makefile.systype Makefile.systype

Open Makefile.systype and add one of the following line

SYSTYPE="macOShomebrew" # mac os

SYSTYPE="Ubuntu" # Ubuntu Linux

to set your operating system. If none of these work, the paths to the libraries are incorrect.

2.2 Compilation error

Errors like, e.g.,

fatal error: ’hdf5.h’ file not found

indicate that the include path (in this case of the hdf5 library) is incorrect. These can be set in
./buildsystem/Makefile.path.*, where ”*” denotes the SYSTYPE you are using. The different *_INCL
paths, starting with -I, should point to a directory in which the relevant header *.h files are located.
In our case, the error indicates that the path listed after HDF5_INCL = -I is incorrect, i.e., does not
contain the file hdf5.h.

2.3 Linking error

For error messages like

error: linker command failed with exit code 1 (use -v to see invocation)

the library path, i.e. the path to the compiled ∗.o or ∗.so files is incorrect (to find out which library,
read through the messages prior to this error message). These are given in the same buildsystem file for
the *_LIB paths.

2

2.4 Finding libraries

Finding the library paths can be done differently, depending on system. For compute clusters and
supercomputers, the cluster documentation of the module manager is the first place to consult. For
your own laptop/workstation, you can search for the libraries in the common system library paths (here
MacOS with homebrew package manager), e.g., to search for the hdf5 library:

find /usr/lib /usr/local/lib /opt/homebrew/lib -name "libhdf5*"

In case you are searching for the header hdf5.h, this would look the following:

find /usr/local/include /opt/homebrew/include -name "hdf5.h"

3

3 Cosmological N-body simulation.

Figure 1: Density projection of matter structure of a cosmological N-body simulation.

This example will cover a full cosmological N-body simulation performed with the Gadget-4 code.
A visualization of the output (at slightly higher resolution) is shown in Figure 1. The initial condition
generator is part of the code and executed at startup. The settings are chosen to create a computa-
tionally relatively inexpensive simulation that can be performed on a laptop within a few minutes. The
repository also contains the simulation output needed to do the analysis (in case you are
unable to run the simulation).

Learning goals

1. Learn how a cosmological N-body simulation is set up

2. Understand the main simulation parameters

3. Visualise the output of an N-body simulation

4. Analyse the output of an N-body simulation

3.1 Simulation setup

Make sure you are in the directory with a downloaded repository

> ls

CosmoComputingSchool

4

Create a simulation directory and change directory into it.

> mkdir sim_cosmobox_nbody

> cd sim_cosmobox_nbody

Get code

Get the Gadget-4 code

> git clone https://github.com/rainerweinberger/gadget4.git gadget4

Copy configuration and parameter files.

Copy the respective Config.sh and param.txt files into code directory

> cp ../CosmoComputingSchool/cosmobox_nbody/Config.sh ./gadget4/

> cp ../CosmoComputingSchool/cosmobox_nbody/param.txt ./

> cp ../CosmoComputingSchool/cosmobox_nbody/outputs.txt ./

Compile Gadget-4

Move to the gadget-4 directory

> cd gadget4

Open the file Makefile.systype and select your system type by removing the leading #. Once this is
done, you can compile the code by typing

> make

If there are error messages, follow the problem solution presented in Section 2. If the compilation was
successful, the directory should contain the executable called Gadget4 (can be checked by typing ls). If
this is the case, leave the directory.

> cd ..

3.2 Main parameters and running

Prior to performing the simulation, let’s have a look into the configuration and parameter files. You can
open these files with any text editor or display the content on the terminal using

> cat gadget4/Config.sh

We will only discuss a subset of the parameters and options here. For a full description, have a look at
the code’s documentation that is accessible via the website

https://wwwmpa.mpa-garching.mpg.de/gadget4/

Config.sh options

The options in Config.sh need to be set prior to compilation. Each time these are changed, the code
needs to be re-compiled since those flags literally hide or reveal different parts of the source code to the
compiler.

Basic code operation

PERIODIC < Boundary conditions for gravity

SELFGRAVITY < Gravitational forces between particles

Gravity options

PMGRID=256 < Particle-mesh algorithm for long-range forces, number is size of grid

Floating point accuracy

POSITIONS_IN_32BIT < 32 bit precision positions. Important for memory use

DOUBLEPRECISION=2 < mode of use of single/double precision internally

5

Group finding

FOF < friend-of-friends group identification algorithm before each output

Miscellaneous code options

POWERSPEC_ON_OUTPUT < matter power spectrum calculation before each output

IC generation via N-GenIC

NGENIC=256 < Initial condition generation, number is the grid for IC generation

IDS_32BIT < Precision of IDs. Needs to be larger for VERY LARGE simulations

param.txt options

The parameter file contains the parameter that are read-in at startup. This means they can be modified
after compilation. Here again a selection of the parameters:

%---- Relevant files

OutputDir ./output < output directory relative to execution directory

SnapshotFileBase snapshot < filename of snapshot files

OutputListFilename outputs.txt < file containing the output times

%---- File formats

SnapFormat 3 < format 3 is hdf5 files, which should be the standard

%---- CPU-time limits

TimeLimitCPU 86400 < maximum runtime of the code in s (can be restarted!)

CpuTimeBetRestartFile 7200 < frequency of a ’restart’ file in s

%----- Memory alloction

MaxMemSize 1800 < max. memory allocation per MPI task in MB

%---- Caracteristics of run

TimeBegin 0.015625 < scale factor at start of the simulation, z = 63

TimeMax 1.0 < scale factor at end of the simulation, z = 0

%---- Basic code options that set the type of simulation

ComovingIntegrationOn 1 < cosmological integration; time is scale factor

%---- Cosmological parameters

Omega0 0.308 < Matter density today relative to critical

OmegaLambda 0.692 < Cosmological constant relative to critical

OmegaBaryon 0.0482 < Baryon density today relative to critical

HubbleParam 0.678 < Hubble parameter ’h’

BoxSize 50.0 < size of simulation volume in code units / h

%---- Output frequency and output paramaters

OutputListOn 1 < we are using the output list

NumFilesPerSnapshot 1 < can split snapshots into multiple files for large sims

MaxFilesWithConcurrentIO 1 < limit the number of files written at a time for large sims

%---- System of units < code units defined by Length, Mass and Velocity

UnitLength_in_cm 3.085678e24 ; Mpc / h

UnitMass_in_g 1.989e43 ; 1.0e10 Msun / h

UnitVelocity_in_cm_per_s 1e5 ; 1 km/sec

%---- Gravitational softening length < particle softening lengths of n-body algorithm

SofteningComovingClass0 0.04 ; 40 kpc/h

SofteningMaxPhysClass0 0.04

6

%----- N-GenIC

NSample 32 < number of particles per dimension in initial conditions

GridSize 32 < should be GridSize=NSample

Running the simulation

Once you have Gadget-4 compiled, i.e. the file Gadget4 exists in your code directory, you can run the
simulation using

> mpiexec -np 4 ./gadget4/Gadget4 param.txt

The simulation will take a few minutes. If the simulation executes correctly, it will end with

...

endrun called, calling MPI_Finalize()

bye!

The simulation creates an output in the directory output (or whatever was specified in the param.txt

file). Listing the files in the output direcetory might look the following:

> ls output

balance.txt fof_tab_002.hdf5 restartfiles

cpu.csv growthfac.txt snapshot_000.hdf5

cpu.txt hydro.txt snapshot_001.hdf5

density.txt info.txt snapshot_002.hdf5

domain.txt inputspec_snapshot.txt timebins.txt

energy.txt memory.txt timings.txt

fof_tab_000.hdf5 parameters-usedvalues variance.txt

fof_tab_001.hdf5 powerspecs

possibly with a lot more fof tables and snapshot files (depending on the specification in outputs.txt). The
snapshot... files contain the simulation (particle) data. On top of this, Gadget-4 performs a number
of common analysis algorithms prior to output automatically. Among them is a halo-finding algorithm.
Its output is in the fof_tab_... files. On top of this, a power spectrum analysis is also performed and
stored in powerspecs.

3.3 Visualization

If the simulation did not work, copy the output data from the repository

> cp -r ../CosmoComputingSchool/cosmobox_nbody/output ./

There is also the last snapshot of a higher resolution (1283 particles) version in

../CosmoComputingSchool/cosmobox_nbody/output128

The first thing to do after running a simulation is to inspect the results visually. While this seems
obvious, this step can already pose significant challenges, in particular for very large simulations. For
cosmological N-body simulations, the obvious thing to plot is the position of the simulation particles.
For state of the art simulations, however, the number of simulation particles vastly exceeds the number
of dots that can reasonably be plotted on a canvas, thus plotting a random subset is reasonable. For
our small test simulation, however, it is not a problem to create a scatter plot with the positions of all
simulation particles. To create plots of the positions of the simulation particles, execute

> python ../CosmoComputingSchool/cosmobox_nbody/analysis_scatter.py ./output/

which will create position-position scatter plots of all snapshots in

output/plots

and merge them together to a movie (requires ffmpeg) in

./output/movie_cosmobox.mp4

Have a look at them. The redshift 0 snapshot (number 62) is shown in Figure 2.

7

Figure 2: Scatter plot of x-y positions of all simulation particles at z = 0.

8

Figure 3: Two-point correlation function of the simulation and of the Millennium simulation as a reference
at z = 0.

Projections from particle distributions

While simply creating a position-position scatter plot is useful to get an idea what the simulation is
doing, it is not particularly scientifically useful. In order to obtain physically meaningful quantities, it is
important to understand how a field can be estimated from a particle distribution. In the following we
project first the column density and then for the dark matter velocity dispersion.

> python ../CosmoComputingSchool/cosmobox_nbody/projection_density.py ./output 62

> python ../CosmoComputingSchool/cosmobox_nbody/projection_veldisp.py ./output 62

Optional tasks:

• Copy the analysis script for velocity dispersion and calculate other fields: ρ2, kinetic energy density
ρv2/2 etc.

• Run density projection script on higher resolution output; look at result; figure out what went
wrong by looking at the script and correct it.

3.4 Quantitative analysis of the simulation results

A common way to quantify the matter clustering is the two-point correlation function ξ(r).It measures
how likely particles are to be separated by a distance r compared to a random distribution.

• ξ(r) = 0: random distribution

• ξ(r) > 0: excess pairs; clustering

• ξ(r) < 0: fewer pairs

A simple estimator is:

9

ξ(r) =
DD(r)

RR(r)
− 1

with DD(r) and RR(r) the normalized pair counts from data and random samples. A simple script to
perform this analysis is given:

> python ../CosmoComputingSchool/cosmobox_nbody/correlation_function.py ./output 62

The resulting plot is shown in Figure 3.

Optional task:

• Run a simulation with box size to 250 Mpc h−1 and plot the correlation function. What is the
difference and why?

10

4 Structure formation with gas and dark matter

Figure 4: Temperature projection of gas of a cosmological hydrodynamics + N-body simulation.

Definition of the Problem

In this example we are simulating structure formation in the Universe for dark matter and gas. The ini-
tial conditions are created with using the matter power spectrum at redshift z = 127 and the Zel’dovich
approximation to calculate the initial displacement and velocities of otherwise uniformly distributed
simulation particles. Different from the pure N-body example, the particles are split into dark matter
particles and gas cells, with the relative mass according to the cosmic baryon to matter fraction. The
subsequent evolution is also governed by different equations: While dark matter only interacts gravita-
tionally, i.e. only accelerations are calculated, gas dynamics is described by the Euler equations, which
are solved separately.

In this case, using the Arepo code, the Euler equations are solved using a finite-volume approach on a
moving, unstructured mesh. This technique has proven to be very advantageous in cosmological galaxy
formation simulations.

Learning goals

1. Learn how to run cosmological N-body simulations with gas.

2. Learn how to use the Arepo code.

3. Understand the different behaviour of gas and dark matter.

11

4.1 Simulation setup

Make sure you are in the directory with a downloaded repository

> ls

CosmoComputingSchool

Create a simulation directory and change directory into it.

> mkdir sim_cosmobox_hydro

> cd sim_cosmobox_hydro

Get code

> git clone https://github.com/rainerweinberger/arepo.git arepo

Copy configuration, parameter and initial condition files

> cp ../CosmoComputingSchool/cosmobox_hydro/ics.hdf5 ./

> cp ../CosmoComputingSchool/cosmobox_hydro/param.txt ./

> cp ../CosmoComputingSchool/cosmobox_hydro/output_list.txt ./

> cp ../CosmoComputingSchool/cosmobox_hydro/Config.sh ./arepo/

Compile Arepo

Move to the arepo directory

> cd arepo

This time, instead of using a file called Makefile.systype, we employ an alternative by setting an
environment variable

> export SYSTYPE="macOShomebrew"

or alternatively “Ubuntu”, depending on your system. To compile Arepo, type

> make

and change to one directory up

> cd ..

4.2 Main parameters and running

Running the simulation

> mpiexec -np 4 ./arepo/Arepo param.txt

4.3 Analysis

Similarly to the N-body example, we first plot the positions of the simulation particles as a scatter plot.

> python ../CosmoComputingSchool/cosmobox_hydro/analyze.py ./output/

In addition to the scatter plot, the script also draws circles around groups of particles that were identified
as halos, with the radius matching the size of the halo (R200,c, to be precise). Having information about
the halos, it is also possible to bin them as function of their mass, and plot a so-called halo mass function,
as shown on the top right plot.

For a gas temperature projection (Figure 4), run

> python ../CosmoComputingSchool/cosmobox_hydro/projection_temperature.py ./output/

Comparing the scatter plot and the temperature projection, it seems like the temperature is correlated
with halos. To quantify this, we plot the halo mass with the maximum temperature reached in the
respective halo

> python ../CosmoComputingSchool/cosmobox_hydro/temperature_halomass.py ./output/

The resulting figure can be seen in Figure 6.

12

Figure 5: Scatter plot of x-y positions of dark matter simulation particles at z = 0. The circles denote
halos identified in the snapshot. The inlay shows the corresponding halo mass function.

13

Figure 6: Scatter plot of maximum gas temperature vs. halo mass of the simulation.

References

M. Vogelsberger, F. Marinacci, P. Torrey, and E. Puchwein, Nature Reviews Physics 2, 42 (2020),
arXiv:1909.07976 [astro-ph.GA] .

V. Springel, R. Pakmor, O. Zier, and M. Reinecke, 506, 2871 (2021), arXiv:2010.03567 [astro-ph.IM] .

V. Springel, 401, 791 (2010), arXiv:0901.4107 [astro-ph.CO] .

R. Weinberger, V. Springel, and R. Pakmor, 248, 32 (2020), arXiv:1909.04667 [astro-ph.IM] .

R. Feldmann and R. Bieri, arXiv e-prints , arXiv:2507.08925 (2025), arXiv:2507.08925 [astro-ph.GA] .

H. Mo, F. C. van den Bosch, and S. White, Galaxy Formation and Evolution (2010).

14

http://dx.doi.org/10.1038/s42254-019-0127-2
http://arxiv.org/abs/1909.07976
http://dx.doi.org/10.1093/mnras/stab1855
http://arxiv.org/abs/2010.03567
http://dx.doi.org/10.1111/j.1365-2966.2009.15715.x
http://arxiv.org/abs/0901.4107
http://dx.doi.org/10.3847/1538-4365/ab908c
http://arxiv.org/abs/1909.04667
http://dx.doi.org/10.48550/arXiv.2507.08925
http://arxiv.org/abs/2507.08925
http://dx.doi.org/10.1017/CBO9780511807244

	Cosmological simulations in theory
	Literature

	Compiling Gadget-4 – common obstacles
	Get code and compilation
	Compilation error
	Linking error
	Finding libraries

	Cosmological N-body simulation.
	Simulation setup
	Main parameters and running
	Visualization
	Quantitative analysis of the simulation results

	Structure formation with gas and dark matter
	Simulation setup
	Main parameters and running
	Analysis

